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nature and orientation of the tetragonal crystal while
hot turned out to be exactly the same as in the first case.
However, in this second case, since the crystal reverted
to the monoclinic structure on cooling, it was possible
to obtain some information on the reverse transformation.

As soon as a crystal was heated above ~1200 °C,
tetragonal reflections could be observed. There were, of
course, three orthogonal axes, and one of these, as
predicted, was parallel to the original monoclinic b axis.
However, instead of one axis being parallel to monoclinic
¢ and one 9-2° from a, the two tetragonal axes split the
difference, i.e. the 90° tetragonal angle was inscribed,
approximately symmetrically,within the larger monoclinic
angle, f. Although somewhat unexpected, this becomes
plausible when one considers the next result. The tetra-
gonal crystal was a triplet, and each axial direction gave
a reflection both for a* and for c*.

Removal of the flame resulted in quenching of the
crystal, and the one that was tied with wire reverted to
the monoclinic structure. Its reflections were now broad
and of low peak height. The extent of twinning was
considerably enhanced, and in addition the crystal now
consisted of a number of slightly misoriented blocks, still
parallel along the original b direction but rotated out of
register in the a —c¢ plane over a range of about 10°.
Since the tetragonal axes must rotate 4 to 5° in the a—c
plane to become the monoclinic ¢ and ¢ axes, the various
partners of the tetragonal trilling must have rotated their
respective axes in opposite senses, thus giving rise to the
10° spread in orientation.

The observational evidence does not furnish a clear
decision as to whether the transformation is of the brittle
martensitic or the true martensitic type (Wolten 1963),
but favors the latter point of view.

If the transformation is martensitic, it should be pos-
sible, in principle, to apply the theory of zero average
strain by Wechsler, Lieberman & Read (1953) for the
calculation of the habit plane. The term ‘habit plane’, as
used here, does not refer to the crystal habit but denotes
a crystallographic plane which, in a martensitic phase
transformation, is common to both lattices and remains
undistorted and unrotated through the transformation.
The calculation cannot, at present, be carried out for lack
of certain additional data. However, the observations
plainly suggest that the habit plane is the monoclinic (101)
which becomes (101), (110), and (011) of the tetragonal
trilling, indexed on the double cell. The misfit of the
attice parameters is relieved by twinning.
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The data that are lacking for the application of the
theory are the lattice parameters of the monoclinic phase
at the temperature of the transformation. The tetragonal
parameters were measured directly by Teufer (1962) at
1250 °C, a little above the transformation range. The
lattice parameters of the monoclinic phase are accurately
known only at room temperature*. A mean (bulk) coeffi-
cient of thermal expansion for zirconia is known (Fulker-
son, 1960), but if this is applied to the room temperature
cell volume and extrapolated to 1250 °C, a volume
difference of about 19% between the phases is obtained,
which is inconsistent with the observed bulk volume
change of the transformation of about 7% (Geller &
Yavorsky, 1945). It is clear, therefore, that the coefficient
of expansion of the monoclinic phase must change rapidly
above 1000 °C. This effect would distort dilatometric
curves of the transformation and explain the discrepancy
between dilatometric and X-ray transformation temper-
atures noted by Duwez & Odel (1950).
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* Latticc parameters for monoclinic zirconia were deter-
mined by McCullough & Trueblood (1959) using a single crystal
of baddeleyite and by Adam & Rogers (1959) using synthetic
ZrO, powder. The discrepancy between the two sets of data
is very slight but results in significant differences in calculated
interplanar spacings at low diffraction angles. The spacings
observed by the author on many occasions, as well as those
reported by Ferguson (1960), for synthetic ZrO, consistently
agreed with those calculated from the lattice parameters of
Adam & Rogers.
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Recent work by Tournarie (1956 a, b) and Wilson (1962 a,
b, ¢; 1963) has clearly established the usefulness of the
variance of an X-ray diffraction line profile due to an
aggregate of distorted crystallites as a measure of the
particle size and strain of the aggregate. Langford &
Wilson (1963) and Halder & Mitra (1963) have described
practical methods of determining particle size and strain
from the study of variances of the line profiles. Both the

methods are extremely dependent on the choice of the
range over which the variance has been determined. The
present work describes a graphical method in which this
difficulty has been removed.

Wilson (1962 b) has shown that, if the entire line broad-
ening is due to particle size effect, the variance of the line
profile in 26,
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Table 1. Particle size and strain of aluminum at different stages of annealing

Particle size (A)

Strain x1 03

Warren & Warren &
Averbach Averbach
Temp. of Integral method Integral method
annealing Present breadth Gauss Present breadth Gauss
(°C) method method strain method method strain
30 3258 4023 360 1.23 1-02 6-51
100 4112 4219 440 0-86 0-61 3-27
200 4545 4865 740 0-52 0-37 1-19
300 5624 6423 1040 0-47 0-30 0-38
_ Kie L2 (1) 300
" 2n% cosf 4nmiticos? 6 28:0
260 Al

where 0 is the Bragg angle, ¢ the particle size, A the wave
length used, o the angular range (in 26) over which the
intensity distribution is appreciable, and K and L are
constants for a given particle shape. Wilson (1963) has
further shown that if the broadening is due to strain only,

W =4 tan? 6{e?) (2)

where (e?) is the variance of the strain.

Attributing the broadening to both particle size and
strain, we can write, because of the additivity property
of the variance,

Ko Lz
T 2n%cos 0 4n%? cos? 0

+4 tan? 6e%) . (3)

For isotropic substances like aluminum and tungsten,
the particle shape can be taken to be spherical, for which
K =(97/16)% and L =0 (Wilson, 1962 b) for all reflexions.
For other cases, particle size and strain can be determined
for a particular direction, e.g. 111 and 100 for f.c.c. crystals
like copper, nickel efc. This can be done by studying
multiple reflexions like 111, 222 and 200, 400 as has been
done for the method of integral breadths by Michell &
Haig (1957), Smallman & Westmacott (1957) etc. By a
proper change of axes, each of these sets of reflexions can
be treated as 00l,, 002l .... eic. reflexions for each of
which K=1 and L=0 (Wilson, 1962 b). With these as-
sumptions, equation (3) can be written

W =10/27% cos 0 + 4 tan?6(e?) (4)
where p=t¢/K is the apparent particle size. From this,
we have

n2 (e?)

W cos 8 1
ogcosf a2

e 2n%p

(5)

where a is the lattice parameter and a/n =4/2sin 6. A plot
of W cos /Ao against n2i/c cos@ will thus be linear with
a slope and intercept which will give (¢%)/a® and 1/2r%*p
respectively. From these p and (e?)# can be determined
easily. For different values of o, there will be different
values of W (Langford & Wilson, 1963) but corresponding
to each set of (W, o) values, there will be a separate point
on the linear plot represented by equation (5). Fig. 1
shows such plots for super-pure aluminum cold drawn at
30 °C (reduction 99%) and subsequently annealed for
half an hour at each of the temperatures 100 °C, 200 °C
and 300 °C respectively. The resulting least-square-
fitted values of p and (e%)# are shown in Table 1 along
with the same values obtained by the methods of Wil-
liamson & Hall (1953) and Warren & Averbach (1950).
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Fig. 1.

It is observed that the values obtained by the present
method are intermediate between those obtained by the
other two methods but nearer to those obtained by the
method of integral breadths due to Williamson & Hall
(1953).
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